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(notation): we will use arithmetic modulo 2 instead of (∧,¬).
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Concrete, rather than asymptotic complexity

Our interest is in practical applications. Hence we are looking into the concrete

complexity of circuit optimization problems.

Majority of three

Consider the threshold function

T 3
2 (x1, x2, x3) = 1 iff at least 2 inputs are 1.

T 3
2 (x1, x2, x3) = x1x2 + x1x3 + x2x3

= x1(x2 + x3) + x2x3

= (x1 + x2)(x1 + x3) + x1.

So c∧(T
3
2 ) = 1.
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What about the quadratic form

f(~x) = x1x2 + x3x5 + x2x4 + x1x3 + x2x5 + x4x5 + x1x5?

(Mirwald and Schnorr): The multiplicative complexity of a quadratic form on

n-variables is half the rank of an associated n× n matrix over GF (2).

... at most ⌊n
2
⌋.

This is a constructive result. We can efficiently find a ∧−optimal circuit for any

quadratic form.



Threshold Functions

What about Tn

k
?



Threshold Functions

What about Tn

k
?

T 5
3 = x1x2x3 + x1x2x4 + x1x2x5 + x1x3x4 +

x1x3x5 + x1x4x5 + x2x3x4 + x2x3x5 +

x2x4x5 + x3x4x5 + x1x2x3x4 +

x1x2x3x5 + x1x2x4x5 + x1x3x4x5 +

x2x3x4x5



Threshold Functions

What about Tn

k
?

T 5
3 = x1x2x3 + x1x2x4 + x1x2x5 + x1x3x4 +
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It turns out only 3 multiplications are needed.
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• A function is symmetric if it only depends on the Hamming Weight (number

of 1s) in the input.

• (BPP) The multiplicative complexity of any symmetric predicate on n bits is

at most

n+ 3
√
n.
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x1x2x3x5 + x1x2x4x5 + x1x3x4x5+

x2x3x4x5

This is not an accident: any symmetric function decomposes into a sum of

elementary symmetric functions.
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The complexity of Σ8
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In fact, all known values of c∧(Σ
n
m) satisfy
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2

⌋

− 1.
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n 0 1 2 3 4 5 6 7 8

3 2 2 2 2 – – – – –

4 3 2 2 2 3 – – – –

5 4 4 3 3 4 4 – – –

6 5 4 5 3 5 4 5 – –

7 6 6 6 6 6 6 6 6 –

8 7 6 6 6 6 6 6 6 7

(Cagdas and Turan): c∧(E
8
4) = 6.
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The Hamming Weight H(x1, . . . , xn) is the number of 1s among the xis.

Computing the binary representation of H(), such as

H(1, 0, 1, 0, 1, 1, 0, 1) = 1012,

is a basic operation for integer arithmetic.
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Denote by Hn the Hamming Weight function on n bits.

It turns out c∧(H
n) = n− h(n), where h(n) is the Hamming Weight of n.

e.g. c∧(H
7) = 7− 3 = 4 since 7 = 1112.
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For example

H13 = Σ13
8 Σ13

4 Σ13
2 Σ13

1

... more identities like this.

More generally: the multiplicative complexity of the Hamming Weight implies

bounds on the complexity of integer sum, integer multiplication, binary

polynomial multiplication, finite field arithmetic, ...
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Denote by fn a function on n inputs. Note that the function f = x1 · x2 · · ·xn
has multiplicative complexity n− 1.

• ∀f4 : c∧(f4) ≤ 3

In fact, all 4-bit bijections have multiplicative complexity at most 5 (Zajac et.

al.).

• ∀f5 : c∧(f5) ≤ 4.

• ∃f7 : c∧(f7) ≥ 7 (a simple counting argument).

More good stuff using SAT solvers by Courtois, Zajac and others.
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What about functions on six inputs?

There are 150,357 affine equivalence classes.

• Codish et al conjecture ∀f5 : c∧(f5) ≤ 5.

• At NIST we ran a large computation that enumerates circuits by the

location of the AND gates. If our code is correct, there are 931 affine

equivalence classes with multiplicative complexity 6.

checking, checking , . . ..



Multiplicative complexity is not hopeless

• In the last few years we have developed a number of tools to bound

multiplicative complexity.

• these results are constructive, so we can build circuits.

• when we build a circuit with “few” multiplications, it often has large linear

components.



A new logic synthesis method

To build a circuit for a given function we can try the following

1. construct a circuit with few multiplications;

2. optimize the linear part.



Some new results

• A circuit for the S-box of AES with depth 16 and 125 gates.

• A circuit for multiplication in GF (216) with depth 8 and size 374.

• Reduced by 2/3 the circuit size of a 16-bit Sbox in MILCOM 2015.
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