Known Tight Bounds For The Multiplicative Complexity Of Boolean Functions

René Peralta* National Institute of Standards and Technology

FewMult Workshop, May 2017

^{*} joint work with Joan Boyar, Meltem Turan, Cagdas Calik

• Shannon-Lupanov bound: over the basis (\lor, \land, \neg) , the circuit complexity of a predicate on n bits is about $\frac{2^n}{n}$ almost everywhere.

- Shannon-Lupanov bound: over the basis (\lor, \land, \neg) , the circuit complexity of a predicate on n bits is about $\frac{2^n}{n}$ almost everywhere.
- Multiplicative complexity: basis is (∧, ¬) and we count only the number of ∧ gates.

- Shannon-Lupanov bound: over the basis (\lor, \land, \neg) , the circuit complexity of a predicate on n bits is about $\frac{2^n}{n}$ almost everywhere.
- Multiplicative complexity: basis is (∧, ¬) and we count only the number of ∧ gates.
- (BPP,Nechiporuk): almost all Boolean predicates on n bits have multiplicative complexity at least $2^{\frac{n}{2}} n$.

- Shannon-Lupanov bound: over the basis (\lor, \land, \neg) , the circuit complexity of a predicate on n bits is about $\frac{2^n}{n}$ almost everywhere.
- Multiplicative complexity: basis is (∧, ¬) and we count only the number of ∧ gates.
- (BPP,Nechiporuk): almost all Boolean predicates on n bits have multiplicative complexity at least $2^{\frac{n}{2}} n$.
- (...) : all Boolean predicates on n bits have multiplicative complexity at most $\frac{3}{\sqrt{2}}2^{\frac{n}{2}} \frac{n}{2}$.

- Shannon-Lupanov bound: over the basis (\lor, \land, \neg) , the circuit complexity of a predicate on n bits is about $\frac{2^n}{n}$ almost everywhere.
- Multiplicative complexity: basis is (∧, ¬) and we count only the number of ∧ gates.
- (BPP,Nechiporuk): almost all Boolean predicates on n bits have multiplicative complexity at least $2^{\frac{n}{2}} n$.
- (...) : all Boolean predicates on n bits have multiplicative complexity at most $\frac{3}{\sqrt{2}}2^{\frac{n}{2}} \frac{n}{2}$.

(notation): we will use arithmetic modulo 2 instead of (\land, \neg) .

Majority of three

Consider the threshold function

Majority of three

Consider the threshold function

$$T_2^3(x_1, x_2, x_3) = x_1 x_2 + x_1 x_3 + x_2 x_3$$

Majority of three

Consider the threshold function

$$T_2^3(x_1, x_2, x_3) = x_1 x_2 + x_1 x_3 + x_2 x_3$$

= $x_1(x_2 + x_3) + x_2 x_3$

Majority of three

Consider the threshold function

$$T_2^3(x_1, x_2, x_3) = x_1 x_2 + x_1 x_3 + x_2 x_3$$

= $x_1(x_2 + x_3) + x_2 x_3$
= $(x_1 + x_2)(x_1 + x_3) + x_1$

Majority of three

Consider the threshold function

 $T_2^3(x_1, x_2, x_3) = 1$ iff at least 2 inputs are 1.

$$T_2^3(x_1, x_2, x_3) = x_1 x_2 + x_1 x_3 + x_2 x_3$$

= $x_1(x_2 + x_3) + x_2 x_3$
= $(x_1 + x_2)(x_1 + x_3) + x_1$

So $c_{\wedge}(T_2^3) = 1$.

 $f(\vec{x}) = x_1 x_2 + x_3 x_5 + x_2 x_4 + x_1 x_3 + x_2 x_5 + x_4 x_5 + x_1 x_5?$

 $f(\vec{x}) = x_1 x_2 + x_3 x_5 + x_2 x_4 + x_1 x_3 + x_2 x_5 + x_4 x_5 + x_1 x_5?$

(Mirwald and Schnorr): The multiplicative complexity of a quadratic form on n-variables is half the rank of an associated $n \times n$ matrix over GF(2).

 $f(\vec{x}) = x_1 x_2 + x_3 x_5 + x_2 x_4 + x_1 x_3 + x_2 x_5 + x_4 x_5 + x_1 x_5?$

(Mirwald and Schnorr): The multiplicative complexity of a quadratic form on n-variables is half the rank of an associated $n \times n$ matrix over GF(2).

... at most $\lfloor \frac{n}{2} \rfloor$.

 $f(\vec{x}) = x_1 x_2 + x_3 x_5 + x_2 x_4 + x_1 x_3 + x_2 x_5 + x_4 x_5 + x_1 x_5?$

(Mirwald and Schnorr): The multiplicative complexity of a quadratic form on n-variables is half the rank of an associated $n \times n$ matrix over GF(2).

... at most $\lfloor \frac{n}{2} \rfloor$.

This is a constructive result. We can efficiently find a \wedge -optimal circuit for any quadratic form.

Threshold Functions

What about T_k^n ?

Threshold Functions

What about T_k^n ?

$$T_{3}^{5} = x_{1}x_{2}x_{3} + x_{1}x_{2}x_{4} + x_{1}x_{2}x_{5} + x_{1}x_{3}x_{4} + x_{1}x_{3}x_{5} + x_{1}x_{4}x_{5} + x_{2}x_{3}x_{4} + x_{2}x_{3}x_{5} + x_{1}x_{4}x_{5} + x_{2}x_{3}x_{4} + x_{2}x_{3}x_{5} + x_{1}x_{2}x_{3}x_{5} + x_{1}x_{2}x_{3}x_{4} + x_{1}x_{2}x_{3}x_{5} + x_{1}x_{2}x_{4}x_{5} + x_{1}x_{3}x_{4}x_{5} + x_{1}x_{2}x_{3}x_{5} + x_{1}x_{2}x_{4}x_{5} + x_{1}x_{3}x_{4}x_{5} + x_{2}x_{3}x_{4}x_{5} + x_{2}x_{4}x_{5} + x_{2}x_{5} + x_{2}x_{5}$$

Threshold Functions

What about T_k^n ?

$$T_{3}^{5} = x_{1}x_{2}x_{3} + x_{1}x_{2}x_{4} + x_{1}x_{2}x_{5} + x_{1}x_{3}x_{4} + x_{1}x_{3}x_{5} + x_{1}x_{4}x_{5} + x_{2}x_{3}x_{4} + x_{2}x_{3}x_{5} + x_{1}x_{4}x_{5} + x_{2}x_{3}x_{4} + x_{2}x_{3}x_{5} + x_{1}x_{2}x_{3}x_{4} + x_{1}x_{2}x_{3}x_{5} + x_{1}x_{2}x_{4}x_{5} + x_{1}x_{3}x_{4}x_{5} + x_{1}x_{2}x_{3}x_{4}x_{5} + x_{1}x_{2}x_{3}x_{4}x_{5} + x_{1}x_{2}x_{3}x_{4}x_{5} + x_{1}x_{2}x_{3}x_{4}x_{5} + x_{1}x_{2}x_{3}x_{4}x_{5} + x_{1}x_{3}x_{4}x_{5} + x_{1}x_{5} + x$$

It turns out only 3 multiplications are needed.

Symmetric Functions

• A function is symmetric if it only depends on the Hamming Weight (number of 1s) in the input.

Symmetric Functions

- A function is symmetric if it only depends on the Hamming Weight (number of 1s) in the input.
- (BPP) The multiplicative complexity of any symmetric predicate on n bits is at most

$$n + 3\sqrt{n}$$
.

$$T_3^5 = \Sigma_3^5 + \Sigma_4^5$$

$$T_3^5 = \Sigma_3^5 + \Sigma_4^5$$

$$= x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_2 x_5 + x_1 x_3 x_4 + x_1 x_3 x_5 + x_1 x_4 x_5 + x_2 x_3 x_4 + x_2 x_3 x_5 + x_2 x_4 x_5 + x_3 x_4 x_5 + x_1 x_2 x_3 x_4 + x_1 x_2 x_3 x_5 + x_1 x_2 x_4 x_5 + x_1 x_3 x_4 x_5 + x_1 x_2 x_3 x_5 + x_1 x_2 x_4 x_5 + x_1 x_3 x_4 x_5 + x_2 x_3 x_4 x_5 + x_2 x_3 x_4 x_5 + x_1 x_2 x_3 x_4 x_5 + x_1 x_3 x_4 x_5 + x_1 x_3 x_4 x_5 + x_1 x_2 x_3 x_4 x_5 + x_1 x_3 x_4 + x_1 x_1 x_2 x_5 + x_1 x_3 x_4 + x_1 x_3 x_4 + x_1 x_2 x_5 + x_1 x_3 x_4 + x_1 x_3$$

$$T_3^5 = \Sigma_3^5 + \Sigma_4^5$$

$$= x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_2 x_5 + x_1 x_3 x_4 + x_1 x_3 x_5 + x_1 x_4 x_5 + x_2 x_3 x_4 + x_2 x_3 x_5 + x_2 x_4 x_5 + x_3 x_4 x_5 + x_1 x_2 x_3 x_4 + x_1 x_2 x_3 x_5 + x_1 x_2 x_4 x_5 + x_1 x_3 x_4 x_5 + x_2 x_3 x_4 x_5 + x_1 x_3 x_4 x_5 + x_1 x_2 x_4 x_5 + x_1 x_3 x_4 x_5 + x_1 x_2 x_4 x_5 + x_1 x_3 x_4 x_5 + x_1 x_2 x_5 + x_$$

This is not an accident: *any symmetric function decomposes into a sum of elementary symmetric functions*.

Σ_i^n	i								
n	2	3	4	5	6	7	8		
3	1	2	_	_	_	_	_		
4	2	2	3	_	_	_	_		
5	2	3	3	4	_	_	_		
6	3	3	4	4	5	_	_		
7	3	4	4	5	5	6	_		
8	4	4	5-6	5	6	6	7		

Σ_i^n	i								
n	2	3	4	5	6	7	8		
3	1	2	_	_	_	_	_		
4	2	2	3	_	_	_	_		
5	2	3	3	4	_	_	_		
6	3	3	4	4	5	_	_		
7	3	4	4	5	5	6	_		
8	4	4	5-6	5	6	6	7		

The complexity of Σ_4^8 is an open problem.

The complexity of Σ_4^8 is an open problem.

There is a monotonicity conjecture $c_{\wedge}(\Sigma_k^n) \leq c_{\wedge}(\Sigma_{k+1}^n)$.

The complexity of Σ_4^8 is an open problem.

There is a monotonicity conjecture $c_{\wedge}(\Sigma_k^n) \leq c_{\wedge}(\Sigma_{k+1}^n)$.

In fact, all known values of $c_{\wedge}(\Sigma_m^n)$ satisfy $\lfloor \frac{n+m}{2} \rfloor - 1$.

Other known values

- $c_{\wedge}(\Sigma_2^n) = \lfloor \frac{n}{2} \rfloor$
- $c_{\wedge}(\Sigma_3^n) = \lceil \frac{n}{2} \rceil$
- $c_{\wedge}(\sum_{n=1}^{n}) = n-2$
- $c_{\wedge}(\Sigma_{n-2}^n) = n-2$
- $c_{\wedge}(\Sigma_{n-3}^n) = n-3$

Other known values

- $c_{\wedge}(\Sigma_2^n) = \lfloor \frac{n}{2} \rfloor$
- $c_{\wedge}(\Sigma_3^n) = \lceil \frac{n}{2} \rceil$
- $c_{\wedge}(\sum_{n=1}^{n}) = n-2$
- $c_{\wedge}(\Sigma_{n-2}^n) = n-2$
- $c_{\wedge}(\Sigma_{n-3}^n) = n-3$

More formulas, and useful identities in (BP 1998, TCS 396 pp. 223 – 246)

$c_{\wedge}(T_i^n)$	i								
n	1	2	3	4	5	6	7	8	
3	2	1	2	_	_	_	_	_	
4	3	3	3	3	_	_	_	_	
5	4	3	3	3	4	_	_	_	
6	5	5	4	4	5	5	_	_	
7	6	5	6	4	6	5	6	_	
8	7	7	7	7	7	7	7	7	

Known Values Of $c_{\wedge}(\overline{E_k^n})$

$c_{\wedge}(E_i^n)$	i									
n	0	1	2	3	4	5	6	7	8	
3	2	2	2	2	_	_	_	_	_	
4	3	2	2	2	3	_	-	_	_	
5	4	4	3	3	4	4	_	_	_	
6	5	4	5	3	5	4	5	_	_	
7	6	6	6	6	6	6	6	6	_	
8	7	6	6	6	6	6	6	6	7	

(Cagdas and Turan): $c_{\wedge}(E_4^8) = 6$.

The Hamming Weight $H(x_1, \ldots, x_n)$ is the number of 1s among the x_i s.

The Hamming Weight $H(x_1, \ldots, x_n)$ is the number of 1s among the x_i s.

Computing the binary representation of H(), such as

```
H(1, 0, 1, 0, 1, 1, 0, 1) = 101_2,
```

is a basic operation for integer arithmetic.

Denote by H^n the Hamming Weight function on n bits.

Denote by H^n the Hamming Weight function on n bits.

It turns out $c_{\wedge}(H^n) = n - h(n)$, where h(n) is the Hamming Weight of n.

Denote by H^n the Hamming Weight function on n bits.

It turns out $c_{\wedge}(H^n) = n - h(n)$, where h(n) is the Hamming Weight of n. e.g. $c_{\wedge}(H^7) = 7 - 3 = 4$ since $7 = 111_2$. It turns out the k^{th} least significant bit of H^n is $\Sigma_{2^k}^n$.

It turns out the k^{th} least significant bit of H^n is $\Sigma_{2^k}^n$.

For example

$$H^{13} = \Sigma_8^{13} \ \Sigma_4^{13} \ \Sigma_2^{13} \ \Sigma_1^{13}$$

It turns out the k^{th} least significant bit of H^n is $\Sigma_{2^k}^n$.

For example

$$H^{13} = \Sigma_8^{13} \ \Sigma_4^{13} \ \Sigma_2^{13} \ \Sigma_1^{13}$$

... more identities like this.

It turns out the k^{th} least significant bit of H^n is $\Sigma_{2^k}^n$.

For example

$$H^{13} = \Sigma_8^{13} \ \Sigma_4^{13} \ \Sigma_2^{13} \ \Sigma_1^{13}$$

... more identities like this.

More generally: the multiplicative complexity of the Hamming Weight implies bounds on the complexity of integer sum, integer multiplication, binary polynomial multiplication, finite field arithmetic, ...

Denote by f_n a function on n inputs. Note that the function $f = x_1 \cdot x_2 \cdots x_n$ has multiplicative complexity n - 1.

• $\forall f_4$: $c_{\wedge}(f_4) \leq 3$

Denote by f_n a function on n inputs. Note that the function $f = x_1 \cdot x_2 \cdots x_n$ has multiplicative complexity n - 1.

• $\forall f_4$: $c_{\wedge}(f_4) \leq 3$

In fact, all 4-bit bijections have multiplicative complexity at most 5 (Zajac et. al.).

Denote by f_n a function on n inputs. Note that the function $f = x_1 \cdot x_2 \cdots x_n$ has multiplicative complexity n - 1.

• $\forall f_4$: $c_{\wedge}(f_4) \leq 3$

In fact, all 4-bit bijections have multiplicative complexity at most 5 (Zajac et. al.).

• $\forall f_5$: $c_{\wedge}(f_5) \leq 4$.

Denote by f_n a function on n inputs. Note that the function $f = x_1 \cdot x_2 \cdots x_n$ has multiplicative complexity n - 1.

• $\forall f_4$: $c_{\wedge}(f_4) \leq 3$

In fact, all 4-bit bijections have multiplicative complexity at most 5 (Zajac et. al.).

- $\forall f_5$: $c_{\wedge}(f_5) \leq 4$.
- $\exists f_7 : c_{\wedge}(f_7) \ge 7$ (a simple counting argument).

Denote by f_n a function on n inputs. Note that the function $f = x_1 \cdot x_2 \cdots x_n$ has multiplicative complexity n - 1.

• $\forall f_4$: $c_{\wedge}(f_4) \leq 3$

In fact, all 4-bit bijections have multiplicative complexity at most 5 (Zajac et. al.).

- $\forall f_5$: $c_{\wedge}(f_5) \leq 4$.
- $\exists f_7 : c_{\wedge}(f_7) \ge 7$ (a simple counting argument).

More good stuff using SAT solvers by Courtois, Zajac and others.

What about functions on six inputs?

• Codish et al conjecture $\forall f_5 : c_{\wedge}(f_5) \leq 5$.

- Codish et al conjecture $\forall f_5 : c_{\wedge}(f_5) \leq 5$.
- At NIST we ran a large computation that enumerates circuits by the location of the AND gates. If our code is correct, there are 931 affine equivalence classes with multiplicative complexity 6.

- Codish et al conjecture $\forall f_5 : c_{\wedge}(f_5) \leq 5$.
- At NIST we ran a large computation that enumerates circuits by the location of the AND gates. If our code is correct, there are 931 affine equivalence classes with multiplicative complexity 6.

checking, checking,

Multiplicative complexity is not hopeless

- In the last few years we have developed a number of tools to bound multiplicative complexity.
- these results are constructive, so we can build circuits.
- when we build a circuit with "few" multiplications, it often has large linear components.

To build a circuit for a given function we can try the following

- 1. construct a circuit with few multiplications;
- 2. optimize the linear part.

Some new results

- A circuit for the S-box of AES with depth 16 and 125 gates.
- A circuit for multiplication in $GF(2^{16})$ with depth 8 and size 374.
- Reduced by 2/3 the circuit size of a 16-bit Sbox in MILCOM 2015.