
Known Tight Bounds For The Multiplicative

Complexity Of Boolean Functions

René Peralta∗

National Institute of Standards and Technology

FewMult Workshop, May 2017

∗joint work with Joan Boyar, Meltem Turan, Cagdas Calik



Asymptotic Complexity

• Shannon-Lupanov bound: over the basis (∨,∧,¬), the circuit complexity of

a predicate on n bits is about 2n

n
almost everywhere.



Asymptotic Complexity

• Shannon-Lupanov bound: over the basis (∨,∧,¬), the circuit complexity of

a predicate on n bits is about 2n

n
almost everywhere.

• Multiplicative complexity: basis is (∧,¬) and we count only the number of ∧
gates.



Asymptotic Complexity

• Shannon-Lupanov bound: over the basis (∨,∧,¬), the circuit complexity of

a predicate on n bits is about 2n

n
almost everywhere.

• Multiplicative complexity: basis is (∧,¬) and we count only the number of ∧
gates.

• (BPP,Nechiporuk): almost all Boolean predicates on n bits have

multiplicative complexity at least 2
n

2 − n.



Asymptotic Complexity

• Shannon-Lupanov bound: over the basis (∨,∧,¬), the circuit complexity of

a predicate on n bits is about 2n

n
almost everywhere.

• Multiplicative complexity: basis is (∧,¬) and we count only the number of ∧
gates.

• (BPP,Nechiporuk): almost all Boolean predicates on n bits have

multiplicative complexity at least 2
n

2 − n.

• (...) : all Boolean predicates on n bits have multiplicative complexity at most
3√
2
2

n

2 − n

2
.



Asymptotic Complexity

• Shannon-Lupanov bound: over the basis (∨,∧,¬), the circuit complexity of

a predicate on n bits is about 2n

n
almost everywhere.

• Multiplicative complexity: basis is (∧,¬) and we count only the number of ∧
gates.

• (BPP,Nechiporuk): almost all Boolean predicates on n bits have

multiplicative complexity at least 2
n

2 − n.

• (...) : all Boolean predicates on n bits have multiplicative complexity at most
3√
2
2

n

2 − n

2
.

(notation): we will use arithmetic modulo 2 instead of (∧,¬).



Concrete, rather than asymptotic complexity

Our interest is in practical applications. Hence we are looking into the concrete

complexity of circuit optimization problems.



Concrete, rather than asymptotic complexity

Our interest is in practical applications. Hence we are looking into the concrete

complexity of circuit optimization problems.

Majority of three

Consider the threshold function

T 3
2 (x1, x2, x3) = 1 iff at least 2 inputs are 1.



Concrete, rather than asymptotic complexity

Our interest is in practical applications. Hence we are looking into the concrete

complexity of circuit optimization problems.

Majority of three

Consider the threshold function

T 3
2 (x1, x2, x3) = 1 iff at least 2 inputs are 1.

T 3
2 (x1, x2, x3) = x1x2 + x1x3 + x2x3



Concrete, rather than asymptotic complexity

Our interest is in practical applications. Hence we are looking into the concrete

complexity of circuit optimization problems.

Majority of three

Consider the threshold function

T 3
2 (x1, x2, x3) = 1 iff at least 2 inputs are 1.

T 3
2 (x1, x2, x3) = x1x2 + x1x3 + x2x3

= x1(x2 + x3) + x2x3



Concrete, rather than asymptotic complexity

Our interest is in practical applications. Hence we are looking into the concrete

complexity of circuit optimization problems.

Majority of three

Consider the threshold function

T 3
2 (x1, x2, x3) = 1 iff at least 2 inputs are 1.

T 3
2 (x1, x2, x3) = x1x2 + x1x3 + x2x3

= x1(x2 + x3) + x2x3

= (x1 + x2)(x1 + x3) + x1.



Concrete, rather than asymptotic complexity

Our interest is in practical applications. Hence we are looking into the concrete

complexity of circuit optimization problems.

Majority of three

Consider the threshold function

T 3
2 (x1, x2, x3) = 1 iff at least 2 inputs are 1.

T 3
2 (x1, x2, x3) = x1x2 + x1x3 + x2x3

= x1(x2 + x3) + x2x3

= (x1 + x2)(x1 + x3) + x1.

So c∧(T
3
2 ) = 1.



Quadratic Forms

What about the quadratic form

f(~x) = x1x2 + x3x5 + x2x4 + x1x3 + x2x5 + x4x5 + x1x5?



Quadratic Forms

What about the quadratic form

f(~x) = x1x2 + x3x5 + x2x4 + x1x3 + x2x5 + x4x5 + x1x5?

(Mirwald and Schnorr): The multiplicative complexity of a quadratic form on

n-variables is half the rank of an associated n× n matrix over GF (2).



Quadratic Forms

What about the quadratic form

f(~x) = x1x2 + x3x5 + x2x4 + x1x3 + x2x5 + x4x5 + x1x5?

(Mirwald and Schnorr): The multiplicative complexity of a quadratic form on

n-variables is half the rank of an associated n× n matrix over GF (2).

... at most ⌊n
2
⌋.



Quadratic Forms

What about the quadratic form

f(~x) = x1x2 + x3x5 + x2x4 + x1x3 + x2x5 + x4x5 + x1x5?

(Mirwald and Schnorr): The multiplicative complexity of a quadratic form on

n-variables is half the rank of an associated n× n matrix over GF (2).

... at most ⌊n
2
⌋.

This is a constructive result. We can efficiently find a ∧−optimal circuit for any

quadratic form.



Threshold Functions

What about Tn

k
?



Threshold Functions

What about Tn

k
?

T 5
3 = x1x2x3 + x1x2x4 + x1x2x5 + x1x3x4 +

x1x3x5 + x1x4x5 + x2x3x4 + x2x3x5 +

x2x4x5 + x3x4x5 + x1x2x3x4 +

x1x2x3x5 + x1x2x4x5 + x1x3x4x5 +

x2x3x4x5



Threshold Functions

What about Tn

k
?

T 5
3 = x1x2x3 + x1x2x4 + x1x2x5 + x1x3x4 +

x1x3x5 + x1x4x5 + x2x3x4 + x2x3x5 +

x2x4x5 + x3x4x5 + x1x2x3x4 +

x1x2x3x5 + x1x2x4x5 + x1x3x4x5 +

x2x3x4x5

It turns out only 3 multiplications are needed.



Symmetric Functions

• A function is symmetric if it only depends on the Hamming Weight (number

of 1s) in the input.



Symmetric Functions

• A function is symmetric if it only depends on the Hamming Weight (number

of 1s) in the input.

• (BPP) The multiplicative complexity of any symmetric predicate on n bits is

at most

n+ 3
√
n.



The Elementary Symmetric Functions

Σn

k
is the predicate on n bits computed by the sum of all terms of degree k.



The Elementary Symmetric Functions

Σn

k
is the predicate on n bits computed by the sum of all terms of degree k.

T 5
3 = Σ5

3 +Σ5
4



The Elementary Symmetric Functions

Σn

k
is the predicate on n bits computed by the sum of all terms of degree k.

T 5
3 = Σ5

3 +Σ5
4

= x1x2x3 + x1x2x4 + x1x2x5 + x1x3x4+

x1x3x5 + x1x4x5 + x2x3x4 + x2x3x5+

x2x4x5 + x3x4x5+x1x2x3x4+

x1x2x3x5 + x1x2x4x5 + x1x3x4x5+

x2x3x4x5



The Elementary Symmetric Functions

Σn

k
is the predicate on n bits computed by the sum of all terms of degree k.

T 5
3 = Σ5

3 +Σ5
4

= x1x2x3 + x1x2x4 + x1x2x5 + x1x3x4+

x1x3x5 + x1x4x5 + x2x3x4 + x2x3x5+

x2x4x5 + x3x4x5+x1x2x3x4+

x1x2x3x5 + x1x2x4x5 + x1x3x4x5+

x2x3x4x5

This is not an accident: any symmetric function decomposes into a sum of

elementary symmetric functions.



Known Values Of c∧(Σ
n

k
)

Σn

i
i

n 2 3 4 5 6 7 8

3 1 2 – – – – –

4 2 2 3 – – – –

5 2 3 3 4 – – –

6 3 3 4 4 5 – –

7 3 4 4 5 5 6 –

8 4 4 5-6 5 6 6 7



Known Values Of c∧(Σ
n

k
)

Σn

i
i

n 2 3 4 5 6 7 8

3 1 2 – – – – –

4 2 2 3 – – – –

5 2 3 3 4 – – –

6 3 3 4 4 5 – –

7 3 4 4 5 5 6 –

8 4 4 5-6 5 6 6 7

The complexity of Σ8
4 is an open problem.



Known Values Of c∧(Σ
n

k
)

Σn

i
i

n 2 3 4 5 6 7 8

3 1 2 – – – – –

4 2 2 3 – – – –

5 2 3 3 4 – – –

6 3 3 4 4 5 – –

7 3 4 4 5 5 6 –

8 4 4 5-6 5 6 6 7

The complexity of Σ8
4 is an open problem.

There is a monotonicity conjecture c∧(Σ
n

k
) ≤ c∧(Σ

n

k+1
).



Known Values Of c∧(Σ
n

k
)

Σn

i
i

n 2 3 4 5 6 7 8

3 1 2 – – – – –

4 2 2 3 – – – –

5 2 3 3 4 – – –

6 3 3 4 4 5 – –

7 3 4 4 5 5 6 –

8 4 4 5-6 5 6 6 7

The complexity of Σ8
4 is an open problem.

There is a monotonicity conjecture c∧(Σ
n

k
) ≤ c∧(Σ

n

k+1
).

In fact, all known values of c∧(Σ
n
m) satisfy

⌊

n+m

2

⌋

− 1.



Other known values

• c∧(Σ
n
2 ) = ⌊n

2
⌋

• c∧(Σ
n
3 ) = ⌈n

2
⌉

• c∧(Σ
n
n−1) = n− 2

• c∧(Σ
n
n−2) = n− 2

• c∧(Σ
n
n−3) = n− 3



Other known values

• c∧(Σ
n
2 ) = ⌊n

2
⌋

• c∧(Σ
n
3 ) = ⌈n

2
⌉

• c∧(Σ
n
n−1) = n− 2

• c∧(Σ
n
n−2) = n− 2

• c∧(Σ
n
n−3) = n− 3

More formulas, and useful identities in (BP 1998, TCS 396 pp. 223 – 246)



Known Values Of c∧(T
n

k
)

c∧(T
n

i
) i

n 1 2 3 4 5 6 7 8

3 2 1 2 – – – – –

4 3 3 3 3 – – – –

5 4 3 3 3 4 – – –

6 5 5 4 4 5 5 – –

7 6 5 6 4 6 5 6 –

8 7 7 7 7 7 7 7 7



Known Values Of c∧(E
n

k
)

c∧(E
n

i
) i

n 0 1 2 3 4 5 6 7 8

3 2 2 2 2 – – – – –

4 3 2 2 2 3 – – – –

5 4 4 3 3 4 4 – – –

6 5 4 5 3 5 4 5 – –

7 6 6 6 6 6 6 6 6 –

8 7 6 6 6 6 6 6 6 7

(Cagdas and Turan): c∧(E
8
4) = 6.



Hamming Weight

The Hamming Weight H(x1, . . . , xn) is the number of 1s among the xis.



Hamming Weight

The Hamming Weight H(x1, . . . , xn) is the number of 1s among the xis.

Computing the binary representation of H(), such as

H(1, 0, 1, 0, 1, 1, 0, 1) = 1012,

is a basic operation for integer arithmetic.



Hamming Weight

Denote by Hn the Hamming Weight function on n bits.



Hamming Weight

Denote by Hn the Hamming Weight function on n bits.

It turns out c∧(H
n) = n− h(n), where h(n) is the Hamming Weight of n.



Hamming Weight

Denote by Hn the Hamming Weight function on n bits.

It turns out c∧(H
n) = n− h(n), where h(n) is the Hamming Weight of n.

e.g. c∧(H
7) = 7− 3 = 4 since 7 = 1112.



Hamming Weight

It turns out the kth least significant bit of Hn is Σn

2k
.



Hamming Weight

It turns out the kth least significant bit of Hn is Σn

2k
.

For example

H13 = Σ13
8 Σ13

4 Σ13
2 Σ13

1



Hamming Weight

It turns out the kth least significant bit of Hn is Σn

2k
.

For example

H13 = Σ13
8 Σ13

4 Σ13
2 Σ13

1

... more identities like this.



Hamming Weight

It turns out the kth least significant bit of Hn is Σn

2k
.

For example

H13 = Σ13
8 Σ13

4 Σ13
2 Σ13

1

... more identities like this.

More generally: the multiplicative complexity of the Hamming Weight implies

bounds on the complexity of integer sum, integer multiplication, binary

polynomial multiplication, finite field arithmetic, ...



Bound on all functions on n inputs

Denote by fn a function on n inputs. Note that the function f = x1 · x2 · · ·xn
has multiplicative complexity n− 1.

• ∀f4 : c∧(f4) ≤ 3



Bound on all functions on n inputs

Denote by fn a function on n inputs. Note that the function f = x1 · x2 · · ·xn
has multiplicative complexity n− 1.

• ∀f4 : c∧(f4) ≤ 3

In fact, all 4-bit bijections have multiplicative complexity at most 5 (Zajac et.

al.).



Bound on all functions on n inputs

Denote by fn a function on n inputs. Note that the function f = x1 · x2 · · ·xn
has multiplicative complexity n− 1.

• ∀f4 : c∧(f4) ≤ 3

In fact, all 4-bit bijections have multiplicative complexity at most 5 (Zajac et.

al.).

• ∀f5 : c∧(f5) ≤ 4.



Bound on all functions on n inputs

Denote by fn a function on n inputs. Note that the function f = x1 · x2 · · ·xn
has multiplicative complexity n− 1.

• ∀f4 : c∧(f4) ≤ 3

In fact, all 4-bit bijections have multiplicative complexity at most 5 (Zajac et.

al.).

• ∀f5 : c∧(f5) ≤ 4.

• ∃f7 : c∧(f7) ≥ 7 (a simple counting argument).



Bound on all functions on n inputs

Denote by fn a function on n inputs. Note that the function f = x1 · x2 · · ·xn
has multiplicative complexity n− 1.

• ∀f4 : c∧(f4) ≤ 3

In fact, all 4-bit bijections have multiplicative complexity at most 5 (Zajac et.

al.).

• ∀f5 : c∧(f5) ≤ 4.

• ∃f7 : c∧(f7) ≥ 7 (a simple counting argument).

More good stuff using SAT solvers by Courtois, Zajac and others.



What about functions on six inputs?



What about functions on six inputs?

There are 150,357 affine equivalence classes.



What about functions on six inputs?

There are 150,357 affine equivalence classes.

• Codish et al conjecture ∀f5 : c∧(f5) ≤ 5.



What about functions on six inputs?

There are 150,357 affine equivalence classes.

• Codish et al conjecture ∀f5 : c∧(f5) ≤ 5.

• At NIST we ran a large computation that enumerates circuits by the

location of the AND gates. If our code is correct, there are 931 affine

equivalence classes with multiplicative complexity 6.



What about functions on six inputs?

There are 150,357 affine equivalence classes.

• Codish et al conjecture ∀f5 : c∧(f5) ≤ 5.

• At NIST we ran a large computation that enumerates circuits by the

location of the AND gates. If our code is correct, there are 931 affine

equivalence classes with multiplicative complexity 6.

checking, checking , . . ..



Multiplicative complexity is not hopeless

• In the last few years we have developed a number of tools to bound

multiplicative complexity.

• these results are constructive, so we can build circuits.

• when we build a circuit with “few” multiplications, it often has large linear

components.



A new logic synthesis method

To build a circuit for a given function we can try the following

1. construct a circuit with few multiplications;

2. optimize the linear part.



Some new results

• A circuit for the S-box of AES with depth 16 and 125 gates.

• A circuit for multiplication in GF (216) with depth 8 and size 374.

• Reduced by 2/3 the circuit size of a 16-bit Sbox in MILCOM 2015.


	Asymptotic Complexity
	Concrete, rather than asymptotic complexity
	Quadratic Forms
	Threshold Functions
	Symmetric Functions
	The Elementary Symmetric Functions
	Known Values Of c(nk)
	Known Values Of c(nk)
	Other known values
	Known Values Of c(Tnk)
	Known Values Of c(Enk)
	Hamming Weight 
	Hamming Weight 
	Hamming Weight 
	Bound on all functions on n inputs
	What about functions on six inputs?
	Multiplicative complexity is not hopeless
	A new logic synthesis method
	Some new results

