LowMC v3: a security update

Martin Albrecht¹ Christian Rechberger^{2,4} Thomas Schneider³ **Tyge Tiessen**² Michael Zohner³ FewMul 2017

¹Royal Holloway, University of London, UK

²DTU Compute, Technical University of Denmark, Denmark

³TU Darmstadt, Darmstadt, Germany

⁴TU Graz, Graz, Austria

Introduction

Block ciphers have various applications in MPC

- Oblivious Pseudorandom Functions (OPRFs) for privacy-preserving keyword search, private set intersection, secure database join, etc.
- Secure storage: store symmetrically encrypted intermediate MPC values in untrusted storage

FHE schemes typically come with a ciphertext expansion in the order of **1000s** to **1000000s**.

Solution: Encrypt message symmetrically, transfer key homomorphically. Cloud decrypts homomorphically then. Zero-knowledge based post-quantum signature schemes can be build by only relying on the security of a hash function.

Bottleneck: Number of multiplications in the hash function.

http://eprint.iacr.org/2017/279

New computational models require new designs

- Cost of XOR gate is (almost) negligible compared to AND gate in MPC or FHE setting
- But since 1970s: balance between linear and non-linear operations
- Idea: Explore extreme trade-offs

Question

What would an efficient cipher look like if linear operations were for free?

There are three possible metrics to minimise:

- 1. ANDs per bit of encrypted text (ANDs/bit)
- 2. multiplicative depth of the encryption circuit (ANDdepth)
- 3. total number of ANDs per encryption (ANDs)

Question

Can we design a cipher that can be optimized with regard to any combination of these metrics?

Minimization of multiplicative complexity also relevant in side-channel countermeasures. Designs much less extreme though:

- Noekeon
- Fantomas
- Robin

Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen. Nessie proposal: Noekeon. In *First Open NESSIE Workshop*, 2000.

Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, and Kerem Varici. LS-designs: Bitslice encryption for efficient masked software implementations. In *Fast Software Encryption (FSE 2014)*, LNCS. Springer.

- Kreyvium
- Flip

Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, María Naya-Plasencia, Pascal Paillier, Renaud SirdeySirdey. Stream Ciphers: A Practical Solution for Efficient Homomorphic-Ciphertext Compression. In *FSE* 2016, LNCS, Springer.

Pierrick Méaux, Anthony Journault, François-Xavier Standaert, Claude Carlet. Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts. In *EUROCRYPT 2016*, LNCS, Springer.

Design Ideas

Minimise ANDs needed for confusion, maximise diffusion.

- Use an SPN
- Use small S-boxes with low multiplicative complexity
- Maximize diffusion in affine layer
- Utilize a partial substitution layer

The LowMC round function and parameters

Size parameters

- block size n bits
- number m of S-boxes in substitution layer

Security parameters

- key size k
- allowed data complexity d

Number of **rounds** r is then calculated as a function of the above. 10

Choice of the S-box

Properties of S-box

- Maximum differential probability 2⁻²
- Maximum squared correlation 2^{-2}
- $\bullet\,$ Circuit needs only 3 AND gates and has ANDdepth 1
- Any combination of output bits has algebraic degree 2

Algebraic Normal Form of S-box:

$$S_0(A, B, C) = A \oplus BC$$

$$S_1(A, B, C) = A \oplus B \oplus AC$$

$$S_2(A, B, C) = A \oplus B \oplus C \oplus AB$$

How do we maximise diffusion in affine layer?

 Choose most general affine layer: multiplication with quadratic n × n matrix over 𝔽₂ and addition of constant 𝔽₂ vector of length n.

How do we choose good matrices and vectors?

• Unfortunately, determining branch number of a binary matrix is hard in practice and theory.

We thus choose to

- Choose random matrix uniformly from all invertible n × n matrices over 𝔽₂.
- **Choose random constant vector** uniformly from \mathbb{F}_2^n .

Bonus: This allows novel security arguments.

Instantiation of affine layers and round key matrices

Problem: How do you accountably instantiate the random matrices and vectors?

- instance of cipher cannot use "random" matrices but must use fixed ones
- how choose them in an accountable way ("nothing up the sleeve")?

Our solution:

- Use Grain LFSR as self-shrinking generator to produce random bit string
- Then use this string to generate the matrices.

Security Analysis

The traditional approach of combining some dedicated cryptanalysis with ad-hoc security margins fails due to the variety of parameter combinations and the explicit goal of minimizing multiplicative complexity.

Round number determination

- 1. Determine the length of elemental distinguishers,
- 2. determine the length of valid combinations of these,
- 3. take the maximum of those values.

Considered elemental distinguishers

- Statistical distinguishers: linear and differential characteristics
- Higher-order derivatives
- Interpolation
- Key-guessing
- Boomerangs
- Impossible differentials

Standard method to determine probability of best differential characteristic:

- 1. Determine minimal number of active S-boxes.
- 2. Combine with maximal differential probability of S-box to determine lower bound on best possible characteristic.

To determine the minimal number of active S-boxes the branch number would be helpful.

Problem

We do not know the branch number of the randomly chosen matrix.

Idea

Calculate for each possible good differential characteristic probability that it is realized in instantiation of LowMC. Sum all these probabilities to get upper bound for probability that at least one is realized.

C set of possible good characteristics.

$$\sum_{c \in C} \Pr(c \text{ exists in cipher})$$

 $\geq \Pr(\text{good characteristic exists})$

Question: What is the minimal number of rounds needed to reach a given algebraic degree?

Lemma

If algebraic degree is d_r after r rounds, max. degree in round r + 1 is

$$\min\left(2d_r, m+d_r, \frac{n}{2}+\frac{d_r}{2}\right)$$

- The first bound is trivial.
- Third bound was proven by Boura, Canteaut, and De Cannière [1]
- Second bound is new.

Growth of the degree

The attacks that we considered for version 2 were not enough to guarantee security of LowMC in the entire parameter space.

LowMC with few S-boxes

When LowMC uses only very few S-boxes per non-linear layer, attacks based on difference enumeration could successfully break the security claims.

Parameter space for AES-like security

blocksize n	sboxes <i>m</i>	keysize <i>k</i>	data d	rounds r	# of ANDs	ANDs per bit
256	49	80	64	12	1764	6.89
128	31	80	64	12	1116	8.72
64	1	80	64	164	492	7.69
1024	20	80	64	45	2700	2.64
1024	10	80	64	85	2550	2.49
256	63	128	128	14	2646	10.34
196	63	128	128	14	2646	13.50
128	3	128	128	88	792	6.19
128	2	128	128	128	768	6.00
128	1	128	128	252	756	5.91
1024	20	128	128	49	2940	2.87
1024	10	128	128	92	2760	2.70
512	66	256	256	18	3564	6.96
256	10	256	256	52	1560	6.09
256	1	256	256	458	1374	5.37
1024	10	256	256	103	3090	3.02

AES-like security

Cipher	Key size	Block size	Data sec.	ANDdepth	ANDs/bit
AES-128	128	128	128	40 (60)	43 (40)
Simon	128	128	128	68	34
Noekeon	128	128	128	32	16
Robin	128	128	128	96	24
Fantomas	128	128	128	48	16.5
LowMC	128	256	128	16	11.8

Lightweight security

Cipher	Key size	Block size	Data sec.	ANDdepth	ANDs/bit
PrintCipher-96	160	96	96	96	96
PrintCipher-48	80	48	48	48	48
Present	80 or 128	64	64	62 (93)	62 (31)
Simon	96	64	64	42	21
Simon	64	32	32	32	16
Prince	128	64	64	24	30
KATAN64	80	64	64	74	36
KATAN32	80	32	32	64	24
DES	56	64	56	261	284
LowMC	80	256	64	14	8.04

Benchmark results

Benchmark results for multiple blocks of total size 12.8 Mbit in GMW

Lightweight Security									
Cipher	Pre	sent	Sin	Simon LowMC					
Comm. [GB]	7.	.4	5.0		2.5				
Total [s]	LAN 216.88	WAN 488.24	LAN 272.22	WAN 605.41	LAN 45.36	WAN 155.75			

Long-Term Security

Cipher	AES		Simon		LowMC	
Comm. [GB]	1	6	13		3.5	
Total [s]	LAN 555.91	WAN 947.79	LAN 447.27	WAN 761.90	LAN 64.37	WAN 215.01

d	п	ANDdepth	t _{block}	t _{bit}	Cipher	Ref.	Key Sched.
128 128	128 128	40	1.5s	0.0119s	AES-128	[2]	excluded
128	128	40	22m	10.313s	AES-128	[3] [4]	excluded
128 128	128 256	40 12	14m 0.8s	6.562s 0.0033s	AES-128 LowMC	[4] this work	excluded included
64 64	size 256	24 11	3.3s 0.64s	0.0520s 0.0025s	PRINCE LowMC	[5] this work	excluded included

Cryptanalysis Challenge

To raise the trust in LowMC and to increase our understanding of the security of designs like LowMC, we propose a cryptanalytic challenge.

Attack targets

Versions of LowMC tailored for differens settings:

- Signature schemes
- Fully-homomorphic encryption
- Multi-party computation

For each target, there are two attack categories: Fast attack on reduced rounds, and breaking (or getting close to breaking) security claims.

Check it out at:

lowmc.github.io/challenge

Conclusion

- Proposed flexible block cipher design of extremely low number of ANDs/bit and extremely low ANDdepth
- Provided experimental and theoretical cryptanalysis to ensure soundness of design
- Demonstrate that symmetric design and cryptanalysis can significantly contribute to make applications of MPC and FHE more practical
- Measured speed-up factors between 2 and 25

- Can the cost of LowMC in the traditional setting be reduced by using a more efficient affine layer without reducing security claims?
- Improve implementations of LowMC in MPC and FHE settings
- Further refinement of round calculation

Appendix

References

- C. Boura, A. Canteaut, and C. D. Cannière, "Higher-order differential properties of Keccak and Luffa", in *Fast Software Encryption (FSE)*, ser. LNCS, vol. 6733, Springer, 2011, pp. 252–269.
- C. Gentry, S. Halevi, and N. P. Smart, Homomorphic evaluation of the aes circuit, Cryptology ePrint Archive, Report 2012/099, http://eprint.iacr.org/, 2012.
- Y. Doröz, Y. Hu, and B. Sunar, *Homomorphic AES* evaluation using NTRU, Cryptology ePrint Archive, Report 2014/039, http://eprint.iacr.org/2014/039, 2014.

S. Mella and R. Susella, "On the homomorphic computation of symmetric cryptographic primitives", in *Cryptography and Coding*, ser. LNCS, M. Stam, Ed., vol. 8308, Springer Berlin Heidelberg, 2013, pp. 28–44.

Y. Doröz, A. Shahverdi, T. Eisenbarth, and B. Sunar, *Toward* practical homomorphic evaluation of block ciphers using *Prince*, Cryptology ePrint Archive, Report 2014/233, http://eprint.iacr.org/2014/233, presented at Workshop on Applied Homomorphic Cryptography and Encrypted Computing (WAHC'14), 2014. Reuse random matrix approach for key schedule:

- Derive round keys from general key by multiplication with $n \times k$ binary matrix.
- Choose matrices uniformly at random from all binary n × k matrices of rank min(n, k).

Lightweight Security								
Cipher	Pre	sent	Simon		LowMC			
Communication [kB]	3	9	2	6	51			
Runtime	LAN	WAN	LAN	WAN	LAN	WAN		
Setup [s]	0.003	0.21	0.002	0.21	0.002	0.14		
Online [s]	0.05	13.86	0.05	5.34	0.06	1.46		
Total [s]	0.05	14.07	0.05	5.45	0.06	1.61		
Long-Term Security								
Cipher	AI	ES	Sim	non	Low	LowMC		
Communication [kB]	17	70	13	36	7	2		
Runtime	LAN	WAN	LAN	WAN	LAN	WAN		
Setup [s]	0.01	0.27	0.009	0.23	0.002	0.15		
Online [s]	0.04	4.08	0.05	6.95	0.07	1.87		
Total [s]	0.05	4.35	0.06	7.18	0.07	2.02		

Boomerang attacks

- Use good differentials that meet halfway from both sides
- Partial non-linear layers allow probability 1 differentials for a few rounds
- The individual differentials must have higher probability though

Solution

- Calculate length at which no differential is usable for boomerang attacks
- Double this length