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P. Zajac, M. Jókay: Multiplicative complexity of bijective
4× 4 S-boxes.
Cryptography and Communications 6 (3), 255–277, 2014.
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Affine equivalence

Definition
Affine equivalence: S1 ∼ S2

∀x ∈ Zn
2, ∃A,B ∈ GL(2,n), c,d ∈ Zn

2 : A·S1(B ·x⊕c)⊕d = S2(x)

Theorem
Multiplicative complexity is invariant within the affine class of
S-boxes.

• For n = 4, there are 302 affine equivalence classes.
• 11! normalized representatives (for fast computation):
0 1 2 * 4 * * * 8 * * * * * * *
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MC1: 1 class

Theorem
There is only one affine class of bijective S-boxes for any n.
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Composition construction

• MC(S) ≤ c
• Only even permutations: replace initial part by swap

(MC = 2) to generate odd permutations.
• With c ≤ 5: all affine classes covered.
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Expand and Compress under affine equivalence

Complexity: 244 S-boxes (not necessarily distinct) generated to
identify all classes with MC(S) ≤ 4 (optimised version)
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MC2: 3 MC1 decomposable + 2 non-decomposable
classes

MC2 – 15

MC2 – 5

MC2 – 2

MC2 – 11

MC2 – 232
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Statistics of MC classes

MC Classes Comp. Classes Classes[%] NormRep[%]
0 1 1 0.33 0.00
1 1 1 0.33 0.00
2 5 3 1.66 0.01
3 25 22 8.28 1.18
4 140 120 46.36 46.38
5 130 155 43.05 52.42

• Comp.classes: as identified just by composition construction.

• Norm.rep: fraction of normalized representatives.
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A note on Optimal S-boxes

• Notation: Leander & Poschmann, 2007
• Best linear and differential characteristics: 16 classes
• MC4: 6 classes

• 4 classes, MC1-decomposable:
G0 ∼CCZ G1 ∼CCZ G2 ∼CCZ G8

• 2 classes, non-MC1-decomposable: G14 ∼CCZ G15

• MC5: 10 classes (including GF (24) inverse)
• 4 MC1-decomposable, no CCZ equivalence between them
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PRESENT-class S-box decomposition (G1)
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P. Zajac: Constructing S-boxes with low multiplicative
complexity.
Studia Scientiarum Mathematicarum Hungarica 52 (2),
135–153, 2015.
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Composition construction of S-boxes

Let S = Sk ◦ · · · ◦ S2 ◦ S1, then MC(S) ≤
∑

MC(Si).

• random composition
• greedy composition

• structured
approach
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S-box quality criteria

• Multiplicative complexity bound:
MC(F )

• Algebraic degree (vectorial):
DD(F ) = min{deg(a · F );a 6= 0}

• Linear weight:
wL(F ) = − log2 maxa6=0,b6=0{|2Prob(a · X = b · F (X ))− 1|}

• Differential weight:
wD(F ) = − log2 maxa6=0,b 6=0{Prob (F (X )⊕ F (X + a) = b)}
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8× 8 S-boxes from random composition

MC(S) deg(S) w_L(S) w_D(S)
< 6 6 7 ≤ 1.25 1.83 1.91 ≥ 2.00 ≤ 4.19 4.42 ≥ 4.68

≤ 12 94.4% 5.6% 0.0% 100.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0%
≤ 13 76.7% 23.3% 0.0% 99.8% 0.6% 0.0% 0.0% 99.9% 0.1% 0.0%
≤ 14 52.6% 47.4% 0.0% 98.3% 3.2% 0.1% 0.0% 96.8% 3.2% 0.0%
≤ 15 31.6% 68.0% 0.5% 92.6% 8.5% 1.1% 0.1% 82.4% 17.2% 0.4%
≤ 16 17.4% 80.0% 2.6% 81.1% 14.1% 4.4% 0.4% 58.1% 38.7% 3.2%
≤ 17 9.1% 83.6% 7.2% 66.5% 17.3% 10.4% 1.3% 36.0% 54.3% 9.7%
≤ 18 4.7% 82.0% 13.3% 52.2% 18.0% 17.6% 2.8% 21.7% 60.2% 18.1%
≤ 19 2.3% 78.8% 18.9% 40.8% 17.4% 24.3% 4.7% 14.0% 60.5% 25.5%
≤ 20 1.2% 75.8% 23.0% 32.6% 16.3% 29.3% 6.5% 10.2% 58.8% 31.0%
≤ 21 0.6% 73.9% 25.5% 27.3% 15.4% 32.8% 8.0% 8.4% 57.3% 34.3%
≤ 22 0.3% 72.6% 27.1% 23.9% 14.6% 35.1% 9.1% 7.5% 56.2% 36.3%
≤ 23 0.1% 71.9% 27.9% 21.9% 14.1% 36.5% 9.8% 7.0% 55.3% 37.6%
≤ 24 0.1% 71.5% 28.4% 20.6% 13.8% 37.3% 10.3% 6.8% 54.7% 38.5%
≤ 25 0.0% 71.3% 28.7% 19.9% 13.5% 37.8% 10.6% 6.6% 54.5% 38.9%
≤ 26 0.0% 71.2% 28.8% 19.5% 13.4% 38.1% 10.9% 6.6% 54.3% 39.2%
≤ 27 0.0% 71.0% 29.0% 19.2% 13.3% 38.3% 10.9% 6.6% 54.0% 39.4%
≤ 28 0.0% 71.0% 29.0% 19.1% 13.4% 38.3% 11.0% 6.5% 54.0% 39.5%
≤ 29 0.0% 71.1% 28.9% 18.9% 13.2% 38.5% 11.1% 6.5% 54.0% 39.5%

RND 0.0% 71.0% 29.0% 18.8% 13.2% 38.5% 11.2% 6.4% 54.0% 39.6%
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”Good” 8× 8 S-boxes from random composition

Fraction of S-boxes:
MC(S) ≤ x , deg = 7, wL ≥ 2.0, and wD ≥ 4.68.

Dotted line: random S-boxes (unknown MC)
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”Good” 8× 8 S-boxes

Random Greedy MDS AES
Samples 220 219 230 1
MC(S) ≤ 16 16 16 32
DD(S) 7 7 6 5
wL(S) 2.00 2.09 2.14 3.00
wD(S) 4.68 5.00 4.68 6.00

AES with best MC ≤ 16 S-box:
• Minimum correlation weight in 4 rounds: 52.25
• Minimum differential weight in 4 rounds: 125
• Saves 320 AND gates in each round
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Note on LowMC

• MC(S) = 3 — affine equivalent to 3 T-gates and rotations.
• Experimentally: random linear layer composition seems

too ”wasteful”.
• What is the multiplicative complexity of the whole cipher?
• Extreme depth design: Use 1 T-gate per round, and linear

transforms that ensure most AND-heavy output is used in
next round.
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P. Zajac: Upper bounds on the complexity of algebraic
cryptanalysis of ciphers with a low multiplicative
complexity.
Designs, Codes and Cryptography 82 (1-2), 43–56, 2017.
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Algebraic cryptanalysis

Denote (unknown) state bits by v , plaintext,ciphertext by x , y .

Solve a system of non-linear Boolean equations (on AND
gates)

vi = (v · aT
i ⊕ ci)⊗ (v · bT

i ⊕ di),

along with linear input and output equations

v = x ·Min y = v ·Mout .
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Using MRHS representation

Transform each equation to MRHS form:

v4 = (v · (11000)T ⊕ 1)⊗ (v · (01100)T ⊕ 0)

(v1, v2, v3, v4, v5) ·


1 0 0
1 1 0
0 1 0
0 0 1
0 0 0

 ∈


0 0 0,
0 1 1,
1 0 0,
1 1 0,


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MRHS system

We get one MRHS equation for each AND gate:

v ·Mi ∈ Si

MRHS equation system:

v · (M1|M2| · · · |Mk ) ∈ S1 × S2 × · · · × Sk

Definition (of MRHS system solution)
Vector v is a solution of MRHS system, if for each i : v ·Mi ∈ Si
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Solving MRHS systems

• Agreeing and Gluing
H. Raddum, I. Semaev. "Solving multiple right hand sides
linear equations." Designs, Codes and Cryptography
49.1-3 (2008): 147-160.

• Global Gluing
Zajac, Pavol. "A new method to solve MRHS equation
systems and its connection to group factorization." Journal
of Mathematical Cryptology 7.4 (2013): 367-381.
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Solving MRHS systems via decoding

1. Reformulate MRHS system as intersection of two GF (2)3k

subspaces:

v · (M1|M2| · · · |Mk ) ∈ S1 × S2 × · · · × Sk

• v · (M1|M2| · · · |Mk ) — linear code C with gen. matrix M
• S = S1 × S2 × · · · × Sk — explicit subspace of GF (2)3k

2. Solution v is an information word for a codeword from S.
3. Apply parity check matrix for C to space S piece-wise:

(s1,i1 ∈ S1, s2,i2 ∈ S2, . . . , sk ,ik ∈ Sk ) · HT = 0
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Solving MRHS systems via decoding

• After linear algebra, we get a 1-regular decoding problem.
• Can be transformed to a smaller classical decoding

problem.
• Complexity depends on the size of codewords:

• n = 3µ, where µ is the number of AND gates in the circuit.
• Multiplicative complexity is directly related to a minimum

size of the decoding instance.
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Decoding attack on circuit with low MC

Let F : GF (2)ν → GF (2)κ be implemented with µ AND-gates.

• MRHS system with µ MRHS equations, ν + µ− κ
unknowns, four 3-bit solutions each,

• Decoding problem: (3µ, µ+ ν − κ, t)-code, need to decode
at most µ errors

• Code rate:
R = 1/3 +

ν − κ
3µ

• Worst-case decoding complexity for ν = κ:

O(2c·n) = O(23c·µ)

• Brute-force O(2ν): for c = 0.1019, we need µ > 3.27ν
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Note on post-quantum crypto

• Standard solution for symmetric crypto and Grover’s
algorithm: increase key size.

• BUT: Quantum Information Set Decoding Algorithms
(Kachigar and Tillich, 2017)

• improved decoding algorithms on quantum computers,
c = 0.05869

• we also need more AND gates per bit to compensate:

µ > 5.68ν
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Summary

• Multiplicative complexity of 4-bit S-boxes can be found by
computer search. What about mathematical proofs,
generalisations?

• Random composition of small-MC S-boxes requires a
longer chain than greedy composition to achieve better
cryptographic properties (degree, non-linearity, differential
uniformity). More structure in linear layers gives better
cipher designs?

• Multiplicative complexity is directly related to complexity of
algebraic cryptanalysis and decoding problem. Can we get
more precise classical and quantum bounds on required
ANDs per encrypted bit?
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